		AB		N	ational 5 Ch	emistry		JAB	noi	Tra	ffic L	ight
	c	hem			Unit 3.2 Pla	astics		chem	Less	Red	Amber	Green
24 25 26	Plastic •	cs are exa Polyme molecu Additio monom Na	mples of 1 rs are lon es called n polymen ers are jo me	naterials g chain n monome risation is ined, forn	known as polymen nolecules formed by rs. s the name given to ning a polymer.	rs. y joining together o a chemical reactio Definition	a large numbe on in which un	r of small saturated	1	8	:	:
	monomerSmall molecules which join together to form polymerspolymerThe long chain molecule made by the joining up of monomerspolymerisationThe process where monomers join together to form polymers											
27	The na	MonomerMonomerethenestyrenepropenechloroethenePolymerpoly(ethene)poly(styrene)poly(propene)poly(chloroethene)									:	:
28 29 30	The st repeater •	ructure o ting unit A repea the com From th <u>Poly</u> poly(p	f a polym ting unit i plete poly le structu: <u>Monomer</u> : propene	er can be s the sho ymer cha re of a po $CH_3 H$ C=C H H H H H H H H	drawn given eithe ortest section of poli in (except for the either olymer, the monom $CH_3 H CH_4 CH_4 CH_4 CH_4 CH_4 CH_4 CH_4 CH$	r the structure of t ymer chain which, nd-groups) er or repeating un $H_3 H$ = C H H_3 H_3 H_4 H_5 H_4 H_5 H_4 H_5	the monomer of , if repeated, w it can be draw $\begin{pmatrix} CH_3H \\ & \\ C - C - \\ & \\ H & H \\ repeating unit$	or the rould yield n.	d	\odot		\odot

Na Traffic	1 †5 : Lights		Past Paper Question Bank Unit 3.2 Plastics										J	JABchem			
	<u>Original</u>	<u>New</u>	Nat5	Nat5	Nat5	Nat5	Nat5	Nat5	Nat5	Nat5							
Ourcome	<u>Paper</u>	<u>Paper</u>	<u>2014</u>	<u>2015</u>	<u>2016</u>	<u>2017</u>	<u>2018</u>	<u>2019</u>	2020	2021							
24 25 26			L4b			L13b(ii)	L2a(i)										
27																	
28 29 30	mc20	mc21	L4a	mc17	L2a L2b	L13b(i)	L2a(i) L2b	mc20									

Nat5	Answer	Reasoning							
2014 4 a	Diagram Showing:	$- \begin{matrix} H & NC_{12}H_8 H & NC_{12}H_8 H & NC_{12}H_8 \\ - & C - & C - & C - & C - & C - \\ - & H & H & H & H & H \end{matrix}$							
²⁰¹⁴ 4b	Addition	Polymerisation Description Addition C=C double bonds in monomers join together to form a long chain of C-C single bonds. Condensation Water molecules are removed as monomers join together to make larger polymer.							
²⁰¹⁶ 2a	Diagram showing:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
²⁰¹⁶ 2b	Н СN С=С Н _{соосн₃}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
2017 13b(i)		The repeating units can be joined together and when the brackets are removed the original polymer is drawn.							
2017 13b(ii)	Addition	Addition polymerisation usually involves a C=C double bond opening up to leave a C-C single bond as the monomers join together to form the polymer. The C=C triple bond in ethyne opens up to leave a C=C double bond as the monomers join together to form the polymer poly(ethyne)							
2018 2a (i)	addition	Addition reactions involve the opening up of the 2^{nd} bond in a C=C double bond and single bonds being formed on either side. Addition Polymerisation is when the C=C double bond in the monomer opens up and joins with other monomers to form a long polymer chain.							
2018 2a(ii)	F F F F F F 	tetrafluoroethene $\begin{array}{ccccccc} F & F & F & F & F & F \\ & & & & & \\ C = C + C = C + C = C \\ & & & & \\ F & F & F & F & F \\ Addition polymerisation \end{array}$							
	╞ ╞ ╞ ╞ ╞	poly(tetrafluoroethene) — $\begin{array}{cccccccccccccccccccccccccccccccccccc$							
²⁰¹⁸ 2b	Н Н С=С Н Н	A addition monomer always has the shape: The monomer given in the question has four fluorine atoms in its corners. The other monomer has four hydrogen atoms in its corners.							

Nat5Past Paper Question BankTraffic LightsUnit 3.2 Plastics										JABchem						
Outcome	<u>Int2</u> 2000	<u>Int2</u> 2001	<u>Int2</u> 2002	<u>Int2</u> 2003	<u>Int2</u> 2004	<u>Int2</u> 2005	<u>Int2</u> 2006	<u>Int2</u> 2007	<u>Int2</u> 2008	<u>Int2</u> 2009	<u>Int2</u> 2010	<u>Int2</u> 2011	<u>Int2</u> 2012	<u>Int2</u> 2013	<u>Int2</u> 2014	<u>Int2</u> 2015
24 25 26								L7a						L10b(ii)		
27								L7c								
28 29 30	L7b	L3a	L7c	mc14	mc15	L6c	mc19	mc14 L7b	L6b	mc18	mc15	L10a(i)		L10b(i)	L5b	mc21

Int2	Answer	% Correct	Reasoning
2003			There are two monomers used to create this polymer. The 1 st 2 carbons (from
MC	Α	44	either end) are from an ethane monomer. The 3 rd and 4 th carbons have a -CH ₃ side
14		••	group making the monomer for this group propene
2004			$\mathbb{E}A$ -CH ₃ and -COOCH ₃ groups must be on the same carbon
2004 MC	D	05	\square B monomer has -CH ₃ and -COOCH ₃ on the same carbon & has a C=C double bond
15	В	CO	$\blacksquare C$ -CH3 and -COOCH3 groups must be on the same carbon
15			⊠D molecule lacks C=C double bond to be the monomer which joins together
			H CNH CNH CN
			- C- C- C- C- C- polymer
2006			Н Н Н
мс	Δ	85	COOCH ₃ COOCH ₃ COOCH ₃
19	F	05	н смн [*] смн см
			$C \equiv C + C \equiv C + C \equiv C$ monomer
			H H H H
			$COOCH_3$ $COOCH_3$ $COOCH_3$
2007	•		A cannot be a repeating unit as the molecule contains a C=C double bond
MC	В	100	E Cannot be a repeating unit as the molecule contains a C=C double bond
14			No Side group has 2 carbons but in polymer side groups only have 1 carbon
2000			☑A 2 carbon monomer (ethene) and 3 carbon monomer (propene)
MC	٨	27	⊠B Largest monomer in plastic has 3 carbons (-CH₃ group off main chain)
18	A	3/	${f f E}$ C Largest monomer in plastic has 3 carbons (-CH $_3$ group off main chain)
10			$f ar{E}$ D Largest monomer in plastic has 3 carbons (-CH $_3$ group off main chain)
			H CH₃ H CH₃ H CH₃
			-H-C-C-C-C-c polymer
2010			
MC	B	87	
15		•••	H CH3 H CH3 H CH3
			$C \equiv C + C \equiv C + C \equiv C$ monomer
2015			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2015 MC	٨	7/	$C = C + C = C + C = C \rightarrow -C - C - C - C - C - C - C - C - C $
21	A	10	
21			
			propene poly(propene)

Int2	Answer	Reasoning
2000 7b	Diagram showing:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2001 3a	OCOCH₃ │ H │ C=C │ H H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2002 7c	F-C-F F-C-F	Take a 2 carbon portion of the polymer and redraw with C=C double bond in the middle of the 2 carbons.
2005 6c	Diagram showing:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2007 7a	C=C double bond	Styrene forms poly(styrene) by addition polymerisation. Addition reactions require a C=C double bond for a reaction to occur.
2007 7b	Structure showing: H H H H H H ~C-C-C-C-C-C-C~ _{C6H5} H _{C6H5} H _{C6H5} H	$H C_{6}H_{5} H C_{6}H_{5} H C_{6}H_{5}$ $C = C + C = C + C = C$ $H H H H H H H$ V $H C_{6}H_{5} H C_{6}H_{5} H C_{6}H_{5}$ $H C_{6}H_{5} H C_{6}H_{5}$ $-C - C - C - C - C - C$ $V = 0$ V

2007 7 c	Poly(phenylethene)	Styrene is also known as phenylethene ∴ poly(styrene) is also known as poly(phenylethene)
2008 6b	H OH -CC H H H	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2011 10a (i)	н соон 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2013 10b(i)	Diagram showing product:	F F F F F F F F F $C = C + C = C + C = C$ $F F F F F F F F$ $F F F F F F F$ $F - C - C - C - C - C - c$ $F F F F F F F$ $F - C - C - C - C - c$ $F F F F F F F$ $F - C - C - C - C - c$ $F F F F F F F$
2013 10b(ii)	Addition	Addition polymerisation has monomers with C=C double bonds which open up and join up with each other to form a long chain of C-C single bonds in a polymer.
²⁰¹⁴ 5b	Diagram Showing:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

No	Nat5 Past Paper Question Bank															
Traffic Lights Unit 3.2 Plastics JABChem											m					
Outcome	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013		
Ourcome	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>		
24 25 26											10b(ii)					
27																
28 29 30	12a		10b(i)	14b	10a	11a	8a			18a	10b(i)	13a	20a			

SG Credit	Answer	Reasoning
2000 <i>c</i> 12a	H COOCH3 	$\begin{array}{ccccccc} & cooccH_3 & cooccH_3 & cooccH_3 & cooccH_3 & cooccH_3 & cooccH_3 \\ H & H & H & H \\ C = C + C = C + C = C \\ H & CN & H & CN & H & CN \end{array} \longrightarrow \begin{array}{ccccccccccccccccccccccccccccccccccc$
2002 <i>C</i> 10b(i)	H H C−C+ C H	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
²⁰⁰³ <i>c</i> 14b	СН₃Н СН₃Н СН₃Н - С-С-С-С-С-С- Н Н Н Н Н Н	Draw propene into a 'H' shape, draw three and polymerise them into polymer CH_3H CH_3H CH_3H CH_3H CH_3H CH_3H CH_3H H_3H $C=C+C=C+C=C$ \longrightarrow $C-C-C-C-C-C-C-C$ H H H H H H H H H H
2004 <i>c</i> 10a	H− C − H H− C−H K− C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2005 <i>C</i> 11a	Diagram showing:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2006 <i>C</i> 8a	F F 	$\begin{bmatrix} F & F & F & F & F & F & F & F & F & F $

2009 <i>C</i> 18a	H CN −C−C− H COOCH₃	A repeating unit is a 2 carbon segment of the main chain
2010 <i>C</i> 10b(i)	Man-made or not found in nature	Synthetic materials are not found naturally on Earth and are made by the chemical industry.
201 <i>C</i> 10b(ii)	Diagram showing:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
^{2011C} 13a	СІ Н С=С 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2012 <i>C</i> 20a	Diagram showing the polymer shown:	$H = COOCH_{3} + C = C + C = C monomer$ $H = CH_{3} + CH_{3} + CH_{3} + CH_{3}$ $H = CH_{3} + CH_{3} + CH_{3} + CH_{3}$ $H = H + H + H + H + H + H + H + H + H + $

Na Traffic	1 †5 : Lights		Past Paper Question Bank Unit 3.2 Plastics									JABchem				
Outcome	2000 General	2001 General	2002 General	2003 General	2004 General	2005 General	2006 General	2007 General	2008 General	2009 General	2010 General	2011 General	2012 General	2013 General		
24 25 26	20b(i)									11e			14b			
27	20b(ii)					14b(i)		10c	17a	11d	17b(iii)		14a			
28 29 30		10a			11b							15a(ii)				

SG General	Answer	Reasoning
2000 <i>G</i>	addition	Addition polymers like poly(tetrafluoroethene) is made when C=C double
20b(i)	polymerisation	bonds open out to form a long chain of C-C singles bonds
2000 <i>G</i>		Monomer ethene propene chloroethene tetrafluoroethene
20b(ii)	tetrafluoroethene	Polymer poly(ethene) poly(propene) poly(chloroethene) poly(tetrafluoroethene)
2001 <i>G</i> 10a	diagram showing the product:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		H H H H H H
2004 <i>G</i>	diagram showing the	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
IID	following product:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2005 <i>G</i> 14b(i)	poly(butene)	Addition Polymerisation: butene poly(butene)

2007G		
100	ethene	Polymer poly(ethene) poly(propene) poly(chloroethene) poly(styrene) Monomer ethene propene chloroethene styrene
100		
2008 <i>G</i>	chloroethene	Monomer ethene propene chloroethene styrene
17a	chior bernene	Polymer poly(ethene) poly(propene) poly(chloroethene) poly(styrene)
2009 <i>G</i>		
11d	styrene	Polymer poly(ethene) poly(propene) poly(chloroethene) poly(styrene) Monomer ethene propene chloroethene styrene
110		
2009 <i>G</i>	Polymerisation or	Polymerisation: process where monomers join together to make a
11e	Addition Polymerisation	bigger molecule (polymer)
2010G		C_3H_6 is the formula of both propene and cyclopropane. To be turned into
17h(:::)	poly(propene)	a plastic, the monomer must have a C=C double bond \therefore C ₃ H ₆ is propene.
17 D(iii)		If monomer is propene then the name of the polymer is poly(propene).
2011 <i>G</i> 15a (ii)	Diagram showing the following product:	$\begin{array}{c ccccc} H & H & H & H & H \\ $
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2012G	Styrene	Monomer ethene propene styrene chloroethene
14a		Polymer poly(ethene) poly(propene) poly(styrene) poly(chloroethene)
2012 <i>G</i>	addition	Addition: C=C double bonds open up join together to form long chain of C-C
14b	polymerisation	Polymerisation: monomers join together to form polymer